Semantic Theory Lecture 11: Aspectual Classes, Plural and Collectives

Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Verbs and Events

Modeling verb semantics using events provides a natural solution to several hard problems of semantic theory.

However ...

Not all verbs can be appropriately interpreted through implicit event arguments.

Verbs and Events

(1) Mary kicked John

(2) "there is a kicking event, in which Mary and John are involved"

(3)John likes Mary

(4) "there is a liking event, in which John Mary are involved" (?)

State- vs. Event-Expressing Verbs

- There are verbs expressing states and verbs expressing events (which we call non-stative for the time being)
 - Stative verbs: know, believe, own, love, resemble
 - Non-stative verbs (event-denoting verbs; verbs expressing "eventualities"): run, walk, kick, kill, build a house
- Only non-stative verbs come with an implicit event argument:
 - Stative transitives: like'(x, y)
 - Nonstative transitives: kick'(e, x, y)

Statives and Non-Statives: Linguistic Evidence

Progressive form

(1)John is running

(2)John is building a house

(3)*John is knowing the answer

Statives and Non-Statives: Linguistic Evidence

Simple present

(1) Mary runs (has the habit of running)

(2)John builds houses (is a professional house builder)

(3)John knows the answer

Statives and Non-Statives: Linguistic Evidence

Manner adverbials

(1)John ran carefully

(2)John carefully built a house

(3)*John carefully knew the answer

Verbs and Events

Modeling verb semantics using events provides a natural solution to several hard problems of semantic theory.

However ...

Not all verbs can be appropriately interpreted through implicit event arguments.

Moreover ...

Non-stative verbs do not form a homogeneous semantic class.

Linguistic Evidence: Distribution of Duration Adverbials

(1) a. John painted a picture in an hour

- b. *John walked in an hour
- c. *It rained in an hour
- (2) a. ?John painted a picture for an hour
 - b. John walked for an hour
 - c. It rained for an hour
- (3) a. It took John an hour to paint a pictureb. *It took John an hour to walk

Linguistic Evidence: Different Entailment Properties

■ John walked from 8. to 11 a.m. \models John walked from 9 to 10 a.m.

■ It rained from 8 to 11 a.m. \models It rained from 9 to 10 a.m.

Linguistic Evidence: Different Entailment Properties

- John stopped walking
 ⊨ John walked
- It stopped raining
 ⊨ It rained
- John stopped painting a picture

 ⊭ John painted a picture

Activities vs. Events

 Activities or Processes: run, walk, swim, work, sleep, rain

Proper Events: paint a picture, write a paper, build a house, find a solution, reach the summit

Linguistic Evidence: Two Sub-Classes of Proper Event Verbs

- (1) a. John painted a picture
 - b. John noticed the picture
- (2) a. John is painting a pictureb. *John is noticing a picture
- (3) a. John painted a picture from 9 to 11 a.m.
 - b. *John noticed the picture from 9 to 11 a.m.
 - c. *John reached the summit from 9 to 11 a.m.
- (4) a. John stopped painting a picture
 - b. *John stopped noticing the picture
 - c. *John stopped reaching the summit

Vendler's Aspectual Verb Classes

An Extension of Vendler's Classification (Moens & Steedman 1988)

Event Categorization accroding to Moens&Steedman

Events are categorize along two dimensions:

Temporal extension:

atomic/ punctual: "Point Activities" and Achievements extended: Processes and accomplishments

Specific consequent state implied:

consequent state: Accomplishments and Achievements no consequent state: Point Activities and Processes

Open Questions

- Strictly speaking, it is not the verbs (i.e., verb lemmas) lemmas that belong to aspectual classes. Aspect is influenced by:
- Verb Inflection, e.g., simple vs. progressive form
- Verb arguments, compare:
 - Bill ate : activity
 - Bill ate an apple : accomplishment
 - Bill ate apples : acitivity
- Adverbial modifiers:
 - Bill frequently smokes
 - Yesterday, Mary kicked Bill all the time

Open Questions

The difference in the representation of statives and nonstatives is clear: presence/ absence of an event argument.

But:

How can the difference between activities and proper events be modelled?

Plural NPs

- Bill and Mary work ⊨ Bill works
- Bill and Mary work ⊨ Mary works
 - work'(b) \wedge work'(m) \models work(b)
 - work'(b) \wedge work'(m) \vDash work(m)
- The students work , John is a student \vDash John works
 - $\forall x(student'(x) \rightarrow work'(x)), student'(j) \models work'(j)$

Collective Predicates

- Bill and Mary met
 - ⊭ Bill met
- The students met , John is a student

 ⊭ John met
- "meet" is a collective predicate.

Distributive and Collective Predicates

- Distributive predicates like work, sleep, eat, blond apply to both singular and plural NPs. When applied to a plural NP, they describe common properties of the set or group of objects denoted by the NP. Therefore, the predicate "distributes" over the individual objects covered by the NP.
- Collective predicates only apply to expressions denoting a set or group of objects. They describe a property of the group, not of its individual members.
 - Examples: meet, gather, unite, agree, be similar, compete, disperse, dissolve, disagree, be numerous, ...

Sums and Atoms

- In the face of collective predicates, we cannot reduce the semantics of plural terms to "atomic" entities of standard FOL.
- In addition to standard individuals, we must add another sort of entities to the model structure universe: "groups" or "sums."

Structured Model Universe with Sum Entities

The edges indicate the (individual) part-of relation.

Lattices and Semi-Lattices

- A partially ordered set is a structure (A, \leq) where \leq is a reflexive, transitive, and anti-symmetric relation over A.
- Let (A, \leq) be a partial order:
 - The join of a and b ∈ A (Notation: a ⊔ b) is the lowest upper bound for a and b.
 - The meet of a and b ∈ A (Notation: a n b) is the highest lower bound for a and b.
- A **lattice** is a partial order (A, \leq) which is closed under meet and join.
- A join semi-lattice is a partial order (A, ≤) which is closed under the join operation.
- An element a ∈ A is an atom, there is no b in A (except possibly 0) such that b<a.</p>
- A lattice (A, \leq) is atomic, if for every $a \neq 0$ there is an atom $b \leq a$.

Model Structure for Plural Terms

- A model structure is a pair $M = \langle \langle U, \leq \rangle, V \rangle$, where
 - **(U, ≤)** is an **atomic join semi-lattice** with universe U and individual part relation ≤.
 - V is a value assignment function.
- $A \subseteq U$ is the set of atoms in $\langle U, \leq \rangle$.
- U A is the set of non-atomic elements, i.e., the proper sums or groups in U.

Logic for Plural and Collectives: Syntax

- New logical constants: A binary summation operator ⊕, a one-place predicate for "is an atom", At, and a two-place relation ⊲ for "(proper) individual part," used as in
 - $j^* \oplus b^*$ "the group consisting of John and Bill"
 - j* ⊲ j* ⊕ b* "John is part of the group consisting of John and Bill"
 - j ⊕ b < c "John and Bill are part of the committee"
- A new type of variables, ranging over sums: X, Y, Z, ...
- Specific predicate constants to represent singular and plural of nouns, e.g.: student^{sg}, student^{pl}, in addition to the general student'.

Logic for Plural and Collecives: Interpretation

- Like standard interpretation function, with additional clauses for ⊕, ⊲, and At :
 - $\blacksquare \ \llbracket a \oplus b \rrbracket^{\mathsf{M},\mathsf{g}} = \ \llbracket a \rrbracket^{\mathsf{M},\mathsf{g}} \sqcup \llbracket b \rrbracket^{\mathsf{M},\mathsf{g}}$
 - $\blacksquare \ \llbracket a \triangleleft b \rrbracket^{M,g} = 1 \ \text{iff} \ \llbracket a \rrbracket^{M,g} < \llbracket b \rrbracket^{M,g}$
 - $[At(a)]^{M,g} = 1$ iff $[a]^{M,g} \in A$

The interpretation function of non-logical constants must satisfy specific constraints. See next slides.

Interpretation of Collective Predicates

Collective predicates F (like meet', collaborate', also student^s):

 $V_{M}(F) \subseteq U - A$

Interpretation of Distributive Predicates

Distributive predicates F (like work', blond', student'):

- V_M(F) is a subset of U satisfying the following conditions:
- If $a \in V_M(F)$ and b < a, then $b \in V_M(F)$ (**Distributivity**)
- iff a, $b \in V_M(F)$, then $a \sqcup b \in V_M(F)$ (**Closure under Summation**)

Interpetation of Number

- Standard common nouns are distributive predicates. The grammatical number feature provides a distinction between atom-denoting and group-denoting uses.
- $V^{M}(student^{sg}) \subseteq A$
- $V^{M}(student^{pl}) \subseteq U A$
- V^M(student[']) = V^M(student^{sg}) ∪ V^M(student^{pl})

Examples

- John and Mary worked
- John and Mary met
- Two students worked
- Two students met
- Two students presented a paper

Mass Nouns and Plurals

water, gold, wood, money, soup, ...

- Mass nouns and plurals are closed under summation:
 - students + students = students
 - water + water = water
- Mass nouns and plurals combine with cardinalities:
 - 5 students 5 liters of water
- Mass nouns and plurals share grammatical patterns:
 - for instance, indefinite plural NPs and indefinite mass term
 NPs don't take an article in English and German

Mass Nouns and Plurals

- Unlike plurals, mass nouns are divisive: An amount of water can always be subdivided into proper parts, which are water again.
- Mass nouns are a challenge for model theoretic semantics: Their denotations cannot be reduced to atomic individuals.

Model Structure for Mass Nouns (1)

- We add another sort of entities, the "portions of matter" M, to the model structure, and distinguish an individual part and a material part relation, writing \leq_i for the former, and \leq_m for the latter:
- $\blacksquare M = \langle \langle U, \leq_i \rangle, \langle M, \leq_m \rangle, V \rangle$
 - $\bullet \quad \mathsf{U} \cap \mathsf{M} = \emptyset$
 - (U, \leq_i) is an atomic join semi-lattice
 - (M, ≤_m) is a non-atomic (and dense) join semi-lattice
 - V is a value assignment function

Model Structure for Mass Nouns (2)

- There is close relationship between the domain of (atomic and sum) individuals and material entities: Each individual consists of a specific portion of matter.
- To model the object-matter relation, we extend the model structure with a "materialization" function h:

$$\blacksquare M = \langle \langle U, \leq_i \rangle, \langle M, \leq_m \rangle, h, V \rangle,$$

where h is a homomorphism that maps (atomic and sum) individuals to the matter they consist of.

- Because h is a homomorphism, the following holds:
 - $a \leq_i b$ iff $h(a) \leq_m h(b)$
 - $h(a \sqcup_i b) = h(a) \sqcup_m h(b)$

Logic for Plurals and Mass Nouns: Syntax

- We add a material fusion operation and a material part relation, and distinguish \oplus_i , \oplus_m , \triangleleft_i , and \triangleleft_m . (summation and individual part relation are indexed with "i").
- We express the materialization function with a new logical operator m (type (e, e), takes a type e argument of sort "individual" and returns a type e constant of sort "matter".
- We use x, y, z, \dots as variables referring to matters.

Logic for Plurals and Mass Nouns: Interpretation

$$\blacksquare M = \langle \langle U, \leq_i \rangle, \langle M, \leq_m \rangle, h, V \rangle$$

Interpretation of new logical constants:

- $\blacksquare \quad \llbracket a \oplus_i b \rrbracket^{\mathsf{M},\mathsf{g}} = \ \llbracket a \rrbracket^{\mathsf{M},\mathsf{g}} \sqcup_i \llbracket b \rrbracket^{\mathsf{M},\mathsf{g}}$
- $\blacksquare \ \llbracket a \triangleleft_i b \rrbracket^{M,g} = 1 \ \text{iff} \ \llbracket a \rrbracket^{M,g} <_i \llbracket b \rrbracket^{M,g}$
- $[At(a)]^{M,g} = 1$ iff $[a]^{M,g} \in A$
- $\blacksquare \ \llbracket a \oplus_m b \rrbracket^{M,g} = \ \llbracket a \rrbracket^{M,g} \sqcup_m \llbracket b \rrbracket^{M,g}$
- $\blacksquare \ \llbracket a \triangleleft_m b \rrbracket^{M,g} = 1 \text{ iff } \llbracket a \rrbracket^{M,g} <_m \llbracket b \rrbracket^{M,g}$
- $\blacksquare \ \llbracket m(a) \rrbracket^{M, g} = h(\llbracket a \rrbracket^{M, g})$

Examples

(1) a. The/A ring is made of gold

b. $\exists y [ring(y) \land gold(m(y))]$

(2) a. The/A ring contains gold b. $\exists y \exists x [ring(y) \land x \triangleleft_m m(y) \land gold(x)]$