Semantic Theory Lecture 11: Aspectual Classes, Plural and Collectives

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Verbs and Events

- Modeling verb semantics using events provides a natural solution to several hard problems of semantic theory.

■ However ...
Not all verbs can be appropriately interpreted through implicit event arguments.

Verbs and Events

(1)Mary kicked John
(2) "there is a kicking event, in which Mary and John are involved"
(3)John likes Mary
(4) "there is a liking event, in which John Mary are involved" (?)

State- vs. Event-Expressing Verbs

- There are verbs expressing states and verbs expressing events (which we call non-stative for the time being)
- Stative verbs: know, believe, own, love, resemble
- Non-stative verbs (event-denoting verbs; verbs expressing "eventualities"): run, walk, kick, kill, build a house
- Only non-stative verbs come with an implicit event argument:
- Stative transitives: like'(x, y)
- Nonstative transitives: $\operatorname{kick}^{\prime}(\mathrm{e}, \mathrm{x}, \mathrm{y})$

Statives and Non-Statives: Linguistic Evidence

■ Progressive form
(1)John is running
(2)John is building a house
(3)*John is knowing the answer

Statives and Non-Statives: Linguistic Evidence

- Simple present
(1)Mary runs (has the habit of running)
(2)John builds houses (is a professional house builder)
(3)John knows the answer

Statives and Non-Statives: Linguistic Evidence

■ Manner adverbials
(1)John ran carefully
(2)John carefully built a house
(3)*John carefully knew the answer

Verbs and Events

- Modeling verb semantics using events provides a natural solution to several hard problems of semantic theory.

■ However ...
Not all verbs can be appropriately interpreted through implicit event arguments.

■ Moreover ...
Non-stative verbs do not form a homogeneous semantic class.

Linguistic Evidence: Distribution of Duration Adverbials

(1) a. John painted a picture in an hour
b. *John walked in an hour
c. *lt rained in an hour
(2) a. ?John painted a picture for an hour
b. John walked for an hour
c. It rained for an hour
(3) a. It took John an hour to paint a picture
b. *It took John an hour to walk

Linguistic Evidence: Different Entailment Properties

- John walked from 8. to 11 a.m.
\vDash John walked from 9 to 10 a.m.
- It rained from 8 to 11 a.m.
\vDash It rained from 9 to 10 a.m.
- John painted a picture from 8 to 11 a.m.
\neq John painted a picture from 9 to 10 a.m.

Linguistic Evidence: Different Entailment Properties

■ John stopped walking
\vDash John walked

- It stopped raining
\vDash It rained
- John stopped painting a picture
\# John painted a picture

Activities vs. Events

■ Activities or Processes: run, walk, swim, work, sleep, rain

- Proper Events: paint a picture, write a paper, build a house, find a solution, reach the summit

Linguistic Evidence:
 Two Sub-Classes of Proper Event Verbs

(1) a. John painted a picture
b. John noticed the picture
(2) a. John is painting a picture
b. *John is noticing a picture
(3) a. John painted a picture from 9 to 11 a.m.
b. *John noticed the picture from 9 to 11 a.m.
c. *John reached the summit from 9 to 11 a.m.
(4) a. John stopped painting a picture
b. *John stopped noticing the picture
c. *John stopped reaching the summit

Vendler's Aspectual Verb Classes

States
know, believe, own, love, resemble

Eventualities

Activities

run, walk, swim, work, sleep, rain

Events

Accomplishments Achievements
paint a picture, recognize, spot, write a paper, build find, lose, reach, a house
die

An Extension of Vendler's Classification (Moens \& Steedman 1988)

States
know, believe, own, love, resemble

Point
hiccup, cough, wink, kick

Process
run, walk, swim, work, sleep, rain

Eventualities

Accomplishments Achievements paint a picture, recognize, spot, write a paper, build find, lose, reach, a house

Event Categorization accroding to Moens\&Steedman

Events are categorize along two dimensions:

- Temporal extension:
atomic/ punctual: „Point Activities" and Achievements extended: Processes and accomplishments
- Specific consequent state implied: consequent state: Accomplishments and Achievements no consequent state: Point Activities and Processes

Open Questions

- Strictly speaking, it is not the verbs (i.e., verb lemmas) lemmas that belong to aspectual classes. Aspect is influenced by:
- Verb Inflection, e.g., simple vs. progressive form
- Verb arguments, compare:
- Bill ate : activity
- Bill ate an apple : accomplishment
- Bill ate apples : acitivity
- Adverbial modifiers:
- Bill frequently smokes
- Yesterday, Mary kicked Bill all the time

Open Questions

- The difference in the representation of statives and nonstatives is clear: presence/ absence of an event argument.

But:

- How can the difference between activities and proper events be modelled?

Plural NPs

- Bill and Mary work \vDash Bill works
- Bill and Mary work \vDash Mary works
- work'(b) ^ work' (m) に work(b)
- work'(b) ^ work' $(\mathrm{m}) \vDash$ work(m)

■ The students work, John is a student \vDash John works

- $\forall x($ student' $(x) \rightarrow$ work' $(x))$, student' $(j) \vDash$ work' $^{\prime}(j)$

Collective Predicates

- Bill and Mary met
\# $=$ Bill met
- The students met, John is a student \# John met

■ "meet" is a collective predicate.

Distributive and Collective Predicates

- Distributive predicates like work, sleep, eat, blond apply to both singular and plural NPs. When applied to a plural NP, they describe common properties of the set or group of objects denoted by the NP. Therefore, the predicate "distributes" over the individual objects covered by the NP.
- Collective predicates only apply to expressions denoting a set or group of objects. They describe a property of the group, not of its individual members.
- Examples: meet, gather, unite, agree, be similar, compete, disperse, dissolve, disagree, be numerous, ...

Sums and Atoms

- In the face of collective predicates, we cannot reduce the semantics of plural terms to "atomic" entities of standard FOL.
- In addition to standard individuals, we must add another sort of entities to the model structure universe: "groups" or "sums."

Structured Model Universe with Sum Entities

The edges indicate the (individual) part-of relation.

Lattices and Semi-Lattices

- A partially ordered set is a structure $\langle\mathrm{A}, \leq\rangle$ where \leq is a reflexive, transitive, and anti-symmetric relation over A.
- Let $\langle\mathrm{A}, \leq\rangle$ be a partial order:
- The join of a and $b \in A$ (Notation: $\mathbf{a} \sqcup \mathbf{b}$) is the lowest upper bound for a and b.
- The meet of a and $b \in A$ (Notation: $\mathbf{a} п \mathbf{b}$) is the highest lower bound for a and b.
- A lattice is a partial order $\langle\mathrm{A}, \leq\rangle$ which is closed under meet and join.
- A join semi-lattice is a partial order $\langle\mathrm{A}, \leq\rangle$ which is closed under the join operation.
- An element $a \in A$ is an atom, there is no b in A (except possibly 0) such that $\mathrm{b}<\mathrm{a}$.
- A lattice $\langle A, \leq\rangle$ is atomic, if for every $a(\neq 0)$ there is an atom $b \leq a$.

Model Structure for Plural Terms

- A model structure is a pair $\mathrm{M}=\langle\langle\mathrm{U}, \leq\rangle, \mathrm{V}\rangle$, where
- $\langle\mathbf{U}, \leq\rangle$ is an atomic join semi-lattice with universe U and individual part relation \leq.
- V is a value assignment function.
- $A \subseteq U$ is the set of atoms in $\langle U, \leq\rangle$.
- U - A is the set of non-atomic elements, i.e., the proper sums or groups in U.

Logic for Plural and Collectives:

Syntax

- New logical constants: A binary summation operator \oplus, a one-place predicate for "is an atom", At, and a two-place relation \triangleleft for "(proper) individual part," used as in
- $j^{*} \oplus b^{*} \quad$ "the group consisting of John and Bill"
- $j^{*} \triangleleft j^{*} \oplus b^{*} \quad$ "John is part of the group consisting of John and Bill"
- $j \oplus b \triangleleft c \quad$ "John and Bill are part of the committee"
- A new type of variables, ranging over sums: X, Y, Z, \ldots
- Specific predicate constants to represent singular and plural of nouns, e.g.: student ${ }^{\text {sg }}$, student ${ }^{\mathrm{pl}}$, in addition to the general student'.

Logic for Plural and Collecives: Interpretation

- Like standard interpretation function, with additional clauses for \oplus, \triangleleft, and At :
- $\llbracket a \oplus b \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket a \rrbracket^{\mathrm{M}, \mathrm{g}} \sqcup \llbracket \mathrm{b} \rrbracket^{\mathrm{M}, \mathrm{g}}$
- $\llbracket a \triangleleft b \rrbracket^{M, g}=1$ iff $\llbracket a \rrbracket^{M, g}<\llbracket b \rrbracket^{M, g}$
- $\llbracket A t(a) \rrbracket^{M, g}=1$ iff $\llbracket a \rrbracket^{M, g} \in A$
- The interpretation function of non-logical constants must satisfy specific constraints. See next slides.

Interpretation of Collective Predicates

- Collective predicates F (like meet', collaborate', also students):
$\mathrm{V}_{\mathrm{M}}(\mathrm{F}) \subseteq \mathrm{U}-\mathrm{A}$

Interpretation of Distributive Predicates

- Distributive predicates F (like work', blond', student'):
- $V_{M}(F)$ is a subset of U satisfying the following conditions:
- If $a \in V_{M}(F)$ and $b<a$, then $b \in V_{M}(F)$ (Distributivity)
- iff $a, b \in V_{M}(F)$, then $a \sqcup b \in V_{M}(F)$ (Closure under Summation)

Interpetation of Number

- Standard common nouns are distributive predicates. The grammatical number feature provides a distinction between atom-denoting and group-denoting uses.
- $\mathrm{V}^{\mathrm{M}}\left(\right.$ student $\left.^{\text {sg }}\right) \subseteq \mathrm{A}$
- $\mathrm{V}^{\mathrm{M}}\left(\right.$ student $\left.^{\mathrm{pl}}\right) \subseteq \mathrm{U}-\mathrm{A}$
- $\mathrm{V}^{\mathrm{M}}\left(\right.$ student $\left.{ }^{\mathrm{C}}\right)=\mathrm{V}^{\mathrm{M}}\left(\right.$ student $\left.^{\text {sg }}\right) \cup \mathrm{V}^{\mathrm{M}}\left(\right.$ student $\left.^{\mathrm{pl}}\right)$

Examples

- John and Mary worked
- John and Mary met
- Two students worked
- Two students met
- Two students presented a paper

Mass Nouns and Plurals

- water, gold, wood, money, soup, ...
- Mass nouns and plurals are closed under summation:
- students + students = students
- water + water = water

■ Mass nouns and plurals combine with cardinalities:

- 5 students -5 liters of water
- Mass nouns and plurals share grammatical patterns:
- for instance, indefinite plural NPs and indefinite mass term NPs don't take an article in English and German

Mass Nouns and Plurals

- Unlike plurals, mass nouns are divisive: An amount of water can always be subdivided into proper parts, which are water again.
- Mass nouns are a challenge for model theoretic semantics: Their denotations cannot be reduced to atomic individuals.

Model Structure for Mass Nouns (1)

- We add another sort of entities, the "portions of matter" M , to the model structure, and distinguish an individual part and a material part relation, writing \leq_{i} for the former, and \leq_{m} for the latter:
- $M=\left\langle\left\langle U, \leq_{i}\right\rangle,\left\langle M, \leq_{m}\right\rangle, V\right\rangle$
- $\mathrm{U} \cap \mathrm{M}=\varnothing$
- $\left\langle\mathrm{U}, \mathbf{s}_{\mathrm{i}}\right\rangle$ is an atomic join semi-lattice
- $\left\langle\mathbf{M}, \leq_{m}\right\rangle$ is a non-atomic (and dense) join semi-lattice
- V is a value assignment function

Model Structure for Mass Nouns (2)

- There is close relationship between the domain of (atomic and sum) individuals and material entities: Each individual consists of a specific portion of matter.
- To model the object-matter relation, we extend the model structure with a "materialization" function h :
- $M=\left\langle\left\langle U, \leq_{i}\right\rangle,\left\langle M, \leq_{m}\right\rangle, h, V\right\rangle$,
where h is a homomorphism that maps (atomic and sum) individuals to the matter they consist of.
- Because h is a homomorphism, the following holds:
- $a \leq i b$ iff $h(a) \leq_{m} h(b)$
- $h\left(a \sqcup_{i} b\right)=h(a) \cup m h(b)$

Logic for Plurals and Mass Nouns: Syntax

- We add a material fusion operation and a material part relation, and distinguish $\oplus_{\mathrm{i}}, \oplus_{\mathrm{m}}, \triangleleft_{\mathrm{i}}$, and $\triangleleft_{\mathrm{m}}$. (summation and individual part relation are indexed with "i").
- We express the materialization function with a new logical operator m (type $\langle e, e\rangle$, takes a type e argument of sort "individual" and returns a type e constant of sort "matter".

■ We use $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \ldots$ as variables referring to matters.

Logic for Plurals and Mass Nouns: Interpretation

- $M=\left\langle\left\langle U, \leq_{i}\right\rangle,\left\langle M, \leq_{m}\right\rangle, h, V\right\rangle$

Interpretation of new logical constants:

- $\llbracket a \oplus i b \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket a \rrbracket^{\mathrm{M}, 9} \mathrm{ui} \llbracket \mathrm{b} \rrbracket^{\mathrm{M}, \mathrm{g}}$
- $\llbracket a \triangleleft_{i} b \rrbracket^{M, g}=1$ iff $\llbracket a \rrbracket^{M, g}<i \llbracket b \rrbracket^{M, 9}$
- $\llbracket A t(a) \rrbracket^{\mathrm{M}, g}=1$ iff $\llbracket a \rrbracket^{\mathrm{M}, g} \in \mathrm{~A}$
- $\llbracket a \oplus m b \rrbracket^{M, g}=\llbracket a \rrbracket^{\mathrm{M}, \mathrm{g}} \sqcup \mathrm{m} \llbracket b \rrbracket^{\mathrm{M}, \mathrm{g}}$
- $\llbracket a \triangleleft_{m} b \rrbracket^{M, g}=1$ iff $\llbracket a \rrbracket^{M, 9}<m \llbracket b \rrbracket^{M, g}$
- $\llbracket m(a) \rrbracket^{M, g}=h\left(\llbracket a \rrbracket^{M, g}\right)$

Examples

(1) a. The/A ring is made of gold
b. $\exists y[$ ring $(\mathrm{y}) \wedge$ gold $(\mathrm{m}(\mathrm{y}))$]
(2) a. The/A ring contains gold
b. $\exists y \exists x\left[\operatorname{ring}(y) \wedge x \triangleleft_{m} m(y) \wedge \operatorname{gold}(x)\right]$

